$$
\text { QUESTION BANK - MATHEMATICS - CLASS } 7 \text { - TERM :01-(} 2019 \text { - } 20 \text {) }
$$

nadet

S.NO	MCQ	
1	$(-6) \times[(-7) \times(-1)]=\square \quad$ a) -48 b) $-42 \quad$ c) 48	d) 42
2	If $\frac{m}{2}=6$, the value of m is \qquad a) 4 b) 8 c) 12	d) 3
3	The solution of the equation $3 x-5=7$ is ___ a) 4 b) 3 c) 4	d) 6
4	The value of $5 \div \frac{5}{-7}$ is \qquad a) - 7 b) 5 c) 7	d) - 5
5	The value of ($\left.3^{0}-2^{0}\right) \times 5^{0}$ is \quad a) 5 b) 1	d) 0
6	The product of (-13) and (-3) is \quad a) -39 b) -16 cll 39	d) 16
7	The standard form of $\frac{12}{-18}$ is \qquad a) $\frac{-12}{18}$ b) $\frac{6}{-9}$ c) $\frac{-2}{3}$	d) $\frac{-4}{6}$
8		d) 5 m
9	The expression for " 3 less than the product of x and y " is \qquad a) 3-xy b) $x-3 y$ c) $\mathrm{xy}-3$	d) $3 x-y$
10	If the difference between the measure of two complementary angles is 20°, the measure of angles \qquad and \qquad .a) $35^{\circ}, 15^{\circ}$ b) $55^{\circ}, 35^{\circ}$ c) $45^{\circ}, 25^{\circ}$ d) $65^{\circ}, 45^{\circ}$	
11	5 is taken away from 0 gives \quad a) 5 al b) $-5 \quad$ c) 0	d) 4
12	Which is the property used in $[16+(-5)]+(-8)=16+[(-5)+(-8)]$ a) Associative b) Distributive c) commutative	d) closure
13		d) none of these
14		
15	The coefficient of 'a' in (-9abc) is \quad a) -9.0 b) 9 c) -9 bc d) 9bc	
16	Algebraic expression for ' 6 less than five times a number' is \qquad a) $5 \mathrm{n}-6$ b) $6-5 n$ c) $5+n-6$	d) none of these
17		d) 5
18	If one of the angles in a linear pair is 75°,then the measure of the other angle is a) 25° b) 105° c) 15° d) none of these	
19	If $\frac{-2}{7}=\frac{6}{x}$ then the value of \mathbf{x} is \qquad a) 21 b) 11 c) $\mathbf{- 1 1}$	d) $\mathbf{- 2 1}$
20	The equivalent rational number of $\frac{-8}{-4}$ is \qquad a) 2 b) -2 c) 1	d) $\frac{1}{2}$
21	The value of $\left(4^{3}\right)^{4} \div\left(4^{2}\right)^{3} \times\left(4^{5}\right)^{0}=$ a) $6^{4} \quad$ b) $4^{0} \quad 10$ c) 2^{12}	d) 1
22	$(-48) \times(-1) \times 3 \times 0 \times 4=\ldots$ a) -576 b) 576 c) 1000	d) 0
23	$2 x y+3 x^{2}-2 y x$ is a \quad a) Monomial \quad b) Binomial c) Trinomial	d) Constant
24	$a^{2}-\left(-a^{2}\right)$ is equal to \quad a) $-2 a^{2} \quad$ b) $2 a^{2} \quad$ c) 0	d) a^{4}
25	Which has the greatest quotient? a) $\mathbf{- 2 0} \div-5 \begin{array}{lll}\text { b) }-20 \div 5 & \text { c) } 20 \div-4\end{array}$	d) $20 \div 4$
26		d) $85^{0}, 75^{\circ}$
27	There are \qquad rational numbers between any two rational numbers. a) 1 b) 2 c) 3	d) infinite
28	' p added to 5 gives 7 ' can be expressed as a) $p-5=7$ b) $7-p=5$ c) $p+5=7$	d) $7+p=5$
	VSA-I VERY SHORT ANSWER TYPE QUESTIONS	
29	Find the product of 7 and its multiplicative inverse.	
30	Find the value of $[(-3) \times 4] \div(-4)$	
31	Subtract (-62) from 34.	
32	What is the additive inverse of ($\left.\frac{-2}{3}-\frac{1}{3}\right)$?	
33	Find the value of $5^{8} \div 5^{5}$	

34	Write 9420000 in standard form.
35	Find the value of the expression $x-6$, when $x=3$.
36	Solve: $\mathrm{x}+9=17$
37	Find the supplement of 134^{0}.
38	Find the product of (25) $\times 674 \times 4$ by using suitable property.
39	Find the value of ($\left.a^{5} \div a^{2} \times a\right)$.
40	Classify the polynomials: i) $9 x+3 z \quad$ ii) $8 a^{5} b c$
41	Is ($p=4$) the solution of the equation $2 p+3=13$?
42	If $2^{x}=8$, then find x.
43	Solve: $54 \div(-18)+63 \div(-7)$
44	Find the sum of $-26,-6$ and 42.
45	Simplify : 4mn-10pqr - 8nm - 3qpr
46	Which is greater: $\left(\frac{4}{7}\right.$ of $\left.\frac{42}{20}\right)$ or $\left(\frac{6}{5}\right.$ of $\left.\frac{45}{30}\right)$
47	Write the coefficient of ' \mathbf{p} ' in $\frac{-2}{3} \boldsymbol{p x}^{2}$
48	Express $\frac{-4}{7}$ as a rational number with numerator 20
	SA-I SHORT ANSWER TYPE QUESTIONS
49	Find the value : $400+[(-16)-(-80)]$
50	Find the value of ' x ' in the adjacent figure. Also write the reason for your answer.
51	Simplify: $9 x-7 y-2+[-3 x-4 y+5]$
52	Simplify : $\left(7^{2} \times 7^{3}\right) \div 7^{3}$
53	When 4 is added to 3 times a number, we get 37. What is the number?
54	Put the correct sign: $[3+(-30 \div 10)] \ldots[-3 \times(4-8)]$
55	Find the value of $5^{\text {th }}$ and $10^{\text {th }}$ term of the expression ($2 \mathrm{n}^{2}-1$).
56	Twice a number when decreased by 7 gives 45 . Find the number.
57	Evaluate: $\left(5^{0}+4^{0}+2^{0}\right) \times 3^{0}$
58	Find the measures of angles ' a ' and' b^{\prime} where ' m II n '
59	Represent $\frac{-4}{3}$ on the number line.
60	Solve: $3(\mathrm{n}-5)=12$
61	Simplify: $(-2)^{3} \times(-10)^{3}$
62	Add: $5 y^{2}+3 y-4$ and $-7+y-8 y^{2}$
63	Find the measures of all the angles made by the intersecting lines at any vertex of an equilateral triangle.
64	A tanker contains $\mathbf{5 0 0}$ litres of milk. Due to small hole in the tanker, the quantity of milk is decreasing at the rate of 9 litres every hour. What will be the quantity of milk after 10 hours?
	SA-II SHORT ANSWER TYPE QUESTIONS

65	Evaluate using the suitable property: $61 \times(-85)+39 \times(-85)$.
66	Find the values of x, y, z in the adjacent figure. Also state the reasons.
67	Find the value of $\left(\frac{-24}{11} \div \frac{8}{33}\right) \times\left(\frac{2}{3}+\frac{1}{3}\right)$
68	Simplify: $\frac{\left(3^{5}\right)^{2} \times a^{3}}{3^{8} \times a^{2}}$
69	Express 1800×1000 as the product of powers of their prime factors.(exponential notation)
70	What should be added to $2 p-q+7$ to get 7p+2q-1
71	Neha's age is 6 years less than twice of Deepa's age. If Neha is 42 years old, find the age of Deepa.
72	Solve : $7 \mathrm{~m}-\frac{9}{2}=13$
73	List three rational numbers between $\frac{-3}{5}$ and $\frac{-2}{3}$.
74	Find the product using a suitable property: [(-50) $\times 25]+[(-50) \times(-4)]+50$
75	What should be subtracted from $2 \mathrm{a}+8 \mathrm{~b}+10$ to get $\mathbf{- 3 a + 7 b + 1 6}$?
76	Simplify using laws of exponents and write the answer in an exponential form. $\left(3^{15} \div 3^{10}\right) \times 9^{2}$
77	Among two supplementary angles, the measure of the larger angle is 44° more than the measure of the smaller. Find their measures.
78	Find both the unknown angles from the figure
79	Simplify and find the value of ($3 \mathrm{x}^{2}-7 y+2 y-x^{2}+2$), if $x=1$ and $\mathrm{y}=0$.
80	Evaluate ; $\frac{2^{3} \times 5^{5} \times 8 \times 27}{3^{2} \times 12 \times 125}$
81	Solve the equation: $5(2 x+1)=10$
	LA - LONG ANSWER TYPE QUESTIONS
82	Which is greater? (-25)-(6-19) or (6-25)-19
83	Find the value of the expression $2 x^{2} y-5 x y+8 x+11 y-1$ when $x=-2$ and $y=1$
84	The length of a rectangular sign board is twice its breadth. If the perimeter of the sign board is 192 m , find the length and breadth of the sign board.
85	In a test (+5) marks are given for every correct answer and (-2) marks are given for every incorrect answer. (i) Riddhi answered all the questions and scored 30 marks though she got 10 correct answers. many incorrect answers had they attempted?
86	Subtract 24ab-10b-18a from the Sum of (20ab +15b) and (10ab-3b + 14a).
87	Rahul's father's age is 5 years more than three times Rahul's age. Find Rahul's age, if his father is 44 years old.

88	i)Simplify using laws of exponents: : $\left[\left(\frac{2}{3}\right)^{6} \div\left(\frac{2}{3}\right)^{5}\right] \times\left(\frac{2}{3}\right)^{2}$ ii) Find the value of x if, $2^{x} \times 2^{6}=64$
89	Simplify: i) $\left(\frac{4}{9}+\frac{2}{3}\right)-\frac{5}{6}$ ii) $\left(\frac{-7}{8} \div \frac{21}{4}\right) \times \frac{-12}{13}$
90	In the following figure, l II m II \mathbf{n} and ${ }^{\prime} \mathbf{t}^{\prime}$ is a transversal. Find the measures of angles $\mathbf{w , x} \mathbf{x}, \mathrm{y}$ and \mathbf{z}.
91	Add the additive inverse of ($16-12 \div 3$ of 2) to the product of $-2,-3$ and -4 .
92	Find: (a) $-2 \frac{1}{3}+\frac{3}{5}$ (b) $\frac{-2}{13} \div \frac{14}{-39}$
93	Simplify: $\frac{3^{6} \times 40 \times 125}{5^{2} \times 6^{3}}$
94	Simplify the expression and find the value if $x=2 \quad 4(2 x-1)+3 x+11$
95	A man's age is four times that of his son's age. After 5 years, he will be three times as old as his son. Find their present ages.
96	Find the measures of the angles a, b, c, and d. State the reasons. (Where ' m ' and' n ' are parallel lines and ' \mathbf{p} ' and ' q 'are transversals)

